Evaluation
Evaluation
Example of a simple Evaluation by using brdr
Evaluation
This example shows a simple Evaluation by using brdr
import numpy as np
from brdr.aligner import Aligner
from brdr.be.grb.enums import GRBType
from brdr.be.grb.loader import GRBActualLoader
from brdr.constants import (
EVALUATION_FIELD_NAME,
RELEVANT_DISTANCE_FIELD_NAME,
PREDICTION_SCORE,
)
from brdr.enums import AlignerResultType, FullReferenceStrategy
from brdr.geometry_utils import geom_from_wkt
from brdr.loader import DictLoader
# Press the green button in the gutter to run the script.
if __name__ == "__main__":
"""
EXAMPLE of the 'evaluate()-function of 'brdr': This function evaluates thematic objects with a former brdr_observation and compares them with an actual observation; and adds evaluation-properties to the result
"""
# Start an aligner to align thematic objects on the actual parcels
aligner = Aligner(crs="EPSG:31370")
# Define the range of relevant distances to search for predictions
relevant_distances = np.arange(0, 400, 10, dtype=int) / 100
# Define the input geometry
input_geometry_wkt = "POLYGON ((174099.53572337731020525 179375.43192003236617893, 174116.23475504826637916 179372.81056040961993858, 174109.5357249012158718 179324.16977629828033969, 174094.68135370552772656 179324.75230065890355036, 174099.53572337731020525 179375.43192003236617893))"
thematic_dict = {"id_1": geom_from_wkt(input_geometry_wkt)}
loader = DictLoader(data_dict=thematic_dict)
# Load the input geometry into the Aligner
aligner.load_thematic_data(loader)
# Load reference data (in this case we use a on-the-fly reference loader to load the actual parcels of Flanders (GRB)
aligner.load_reference_data(
GRBActualLoader(grb_type=GRBType.ADP, partition=1000, aligner=aligner)
)
# Use the EVALUATE-function
aligner_result = aligner.evaluate(
relevant_distances=relevant_distances,
thematic_ids=None,
metadata_field=None,
full_reference_strategy=FullReferenceStrategy.PREFER_FULL_REFERENCE,
)
# Get the EVALUATED results as GEOJSON
fc = aligner_result.get_results_as_geojson(
result_type=AlignerResultType.EVALUATED_PREDICTIONS,
add_metadata=True,
add_original_attributes=True,
aligner=aligner,
)
# Loop these results to print the results
for feature in fc["result"]["features"]:
print(
feature["properties"][aligner.thematic_data.id_fieldname]
+ ": "
+ feature["properties"][EVALUATION_FIELD_NAME]
+ " - score "
+ str(feature["properties"][PREDICTION_SCORE])
+ " - distance "
+ str(feature["properties"][RELEVANT_DISTANCE_FIELD_NAME])
)id_1: prediction_unique_full - score 100 - distance 1.4